Using the Dafermos entropy rate criterion in numerical schemes

نویسندگان

چکیده

Abstract The following work concerns the construction of an entropy dissipative finite volume solver based on convex combination conservative and flux. We aim to construct a semidiscrete scheme that is stable in sense criterion Dafermos as well classical dissipative. proposed shows nice properties like 2 p order accuracy smooth regions non-oscillatory behavior around shocks.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy of Hybrid Censoring Schemes

A hybrid censoring scheme is a mixture of type I and type II censoring schemes. When $n$ items are placed on a life test, the experiment terminates under type I or type II hybrid censoring scheme if either a pre-fixed censoring time T or the rth (1<=r<=n&nbsp;is fixed) failure is first or later observed, respectively. In this paper, we investigate the decomposition of entropy in both hybrid cen...

متن کامل

Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes

Consider a scalar, nonlinear conservative difference scheme satisfying the entropy condition. It is shown that difference schemes containing more numerical viscosity will necessarily converge to the unique, physically relevant weak solution of the approximated conservative equation. In particular, entropy satisfying convergence follows for E schemes—those containing more numerical viscosity tha...

متن کامل

Entropy Stable Numerical Schemes for Two-Fluid Plasma Equations

Two-fluid ideal plasma equations are a generalized form of the ideal MHD equations in which electrons and ions are considered as separate species. The design of efficient numerical schemes for the these equations is complicated on account of their non-linear nature and the presence of stiff source terms, especially for high charge to mass ratios and for low Larmor radii. In this article, we des...

متن کامل

Monotonization of flux, entropy and numerical schemes for conservation laws

Using the concept of monotonization, families of two step and k-step finite volume schemes for scalar hyperbolic conservation laws are constructed and analyzed. These families contain the Force scheme and give an alternative to the Musta scheme. These schemes can be extended to systems of conservation law. Key-words: Finite volumes, finite differences, Riemann solvers, conservation laws, monoto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bit Numerical Mathematics

سال: 2022

ISSN: ['0006-3835', '1572-9125']

DOI: https://doi.org/10.1007/s10543-022-00927-x